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@ The Chain Rule

Axle 1: y revolutions per minute
Axle 2: u revolutions per minute
Axle 3: x revolutions per minute
Figure 3.25
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Find the derivative of a composite function using the Chain Rule.

Find the derivative of a function using the General Power Rule.

Simplify the derivative of a function using algebra.

Find the derivative of a transcendental function using the Chain Rule.

Find the derivative of a function involving the natural logarithmic function.
Define and differentiate exponential functions that have bases other than e.

The Chain Rule

This text has yet to discuss one of the most powerful differentiation rules—the Chain
Rule. This rule deals with composite functions and adds a surprising versatility to the
rules discussed in the two previous sections. For example, compare the following
functions. Those on the left can be differentiated without the Chain Rule, and those on
the right are best differentiated with the Chain Rule.

Without the Chain Rule With the Chain Rule
y=x+1 y = N

y =sinx ¥y = sin 6x
y=3x+2 y=(3x +2)°
y=e+ tanx vy = e + tan x?

Basically, the Chain Rule states that if y changes dy/du times as fast as w, and u
changes du/dx times as fast as x, then y changes (dy/du)(du/dx) times as fast as x.

EXAMPLE n The Derivative of a Composite Function

A set of gears is constructed, as shown in Figure 3.25, such that the second and third
gears are on the same axle. As the first axle revolves, it drives the second axle, which in
turn drives the third axle. Let y, i, and x represent the numbers of revolutions per minute
of the first, second, and third axles, respectively. Find dv/du, du/dx, and dy/dx, and
show that

Solution Because the circumference of the second gear is three times that of the first,
the first axle must make three revolutions to turn the second axle once. Similarly, the
second axle must make two revolutions to turn the third axle once, and you can write

dy oo du
it 3 and ix 2.

Combining these two results, you know that the first axle must make six revolutions
to turn the third axle once. So, you can write

dy _ Rate of change of first axle . Rate of change of second axle
dx ~ with respect to second axle with respect to third axle
_dy X du 3.0=¢= Rate of change of first axle
T du dv T 77 with respect (o third axle

In other words, the rate of change of y with respect to x is the product of the rate of
change of y with respect to « and the rate of change of u with respect to x. o
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152 Chapter 3  Differentiation

EXPLORATION

Using the Chain Rule Each of
the following functions can be
differentiated using rules that you
studied in Sections 3.2 and 3.3.
For each function, find the
derivative using those rules. Then
find the derivative using the Chain
Rule. Compare your results.
Which method is simpler?

a 2
T3+ 1

b. (x + 2)3

€. sin 2x

Example 1 illustrates a simple case of the Chain Rule. The general rule is stated
below.

THEOREM 3.11 THE CHAIN RULE

If v = f(u) is a differentiable function of u and u = g(x) is a differentiable
function of x, then y = f(g(x)) is a differentiable function of x and

dy _dy du
dv  du  dx

or, equivalently,

L/ (e] = Fe(a)g )

Let h(x) = f(g(x)). Then, using the alternative form of the derivative, you
need to show that, for x = ¢,

h'(c) = f(glc))g ().

An important consideration in this proof is the behavior of g as x approaches c.
A problem occurs if there are values of x, other than ¢, such that g(x) = glc).
Appendix A shows how to use the differentiability of f and g to overcome this
problem. For now, assume that g(x) # g(c) for values of x other than c. In the proofs
of the Product Rule and the Quotient Rule, the same quantity was added and subtracted
to obtain the desired form. This proof uses a similar technique—multiplying and
dividing by the same (nonzero) quantity. Note that because g is differentiable, it is also
continuous, and it follows that g(x) — g(c) as x—c.

h'(c) = lim x)zic ©)]
— i | Le@) — flele) ) — gld)] .
1ﬁ[www& ) w0 # 500
— | im flgx)) — flglc)) - glx) — gl
‘kcw%m)mwx—c]
= fg(c)g(c) o

When applying the Chain Rule, it is helpful to think of the composite function
f g as having two parts—an inner part and an outer part.

Outer function

y = flgx)) = f(w)

\

Inner function

The derivative of y = f(u) is the derivative of the outer function (at the inner function
i) times the derivative of the inner function.

y= W

;oA

Derivative of Derivative of
outer function inner function
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~cudanls You could also solve the
problem in Example 3 without using the
Chain Rule by observing that

y=x°+ 3t 4 32 4 1
and
y =605 + 12¢° + 6x.

Verify that this is the same result as the
derivative in Example 3. Which method
would you use to find

i 2 509
dx(x + 1)399
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EXAMPLE B3 Decomposition of a Composite Function

v = flglx)) u = glx) y = flw)
1 1
. = = + = -—
YT u=xtl YT u
b. y = sin 2x =2 y = sinu

u
. y=V3x2—x+1 =32 —-—x+1 y=u
u

5

d. y = tan’x = tan x y = u?

EXAMPLE [E] Using the Chain Rule
Find dy/dx fory = (x2 + 1)3.

Solution  For this function, you can consider the inside function to be u = x2 + 1.
By the Chain Rule, you obtain

&, _ 32 + 1)%(2x) = 6x(x? + )2
dr
dy  du -

du dx

The General Power Rule

The function in Example 3 is an example of one of the most common types of
composite functions, y = [u(x)]". The rule for differentiating such functions is called
the General Power Rule, and it is a special case of the Chain Rule.

THEOREM 3.12 THE GENERAL POWER RULE

If y = [u(x)]", where u is a differentiable function of x and n is a real number,
then

g,f_ = nfu(x)]~! %
or, equivalently,

d
E[u”] =nu" 'u’

Because y = u”, you apply the Chain Rule to obtain

28]
dx  \du)\dx
_d o qdu
=g

By the (Simple) Power Rule in Section 3.2, you have D, [1"] = nu"~', and it follows
that

dy _ -1 du
i n[u(x)] o u]
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fo=4@a*-1?
.

x°—

The derivative of fis 0 at x = O and is
undefined at x = +1.
Figure 3.26

Try differentiating the function
in Example 6 using the Quotient Rule.
You should obtain the same result, but
using the Quotient Rule is less efficient
than using the General Power Rule.

EXAMPLE [} Applying the General Power Rule

Find the derivative of f(x) = (3x — 2x?).
Solution Letu = 3x — 2x”. Then

) = (Bx — 207 =
and, by the General Power Rule, the derivative is

n ! ’

|(—"ﬁr—’"%

f’(x) = 3(3x - ZXE)Z% [3x - sz] Apply General Power Rule.

= 3(3x — 2x%)%(3 — 4x).

Differentiate 3x — 2x2,

EXAMPLE E Differentiating Functions Involving Radicals
Find all points on the graph of f(x) = ¥/ (x? — 1)? for which f'(x) = 0 and those for
which f"(x) does not exist.

Solution  Begin by rewriting the function as

fl) = (2 = 1)

Then, applying the General Power Rule (with u = x> — 1) produces

n w ! u’
| R N1

9 =363 = )71y

Apply General Power Rule.

4x
B w— — | Write in radical form.
3x? =1

So, f(x) = 0 when x = 0 and f*(x) does not exist when x = +1, as shown in Figure 3.26.

EXAMPLE B Differentiating Quotients with Constant Numerators
=7
(2r — 3)*
Solution Begin by rewriting the function as
gl) = —7(2t — 3)72

Differentiate g(r) =

Then, applying the General Power Rule produces

n u" u
N
g ’(I) = (— 7)(— 2)(2! - 3)_3(2) Apply General Power Rule.
b
Constant
Multiple Rule
= 28(2t - 3)73 Simplify.
= i Writ ith iti t | |
= . rite with positive exponent.
(2r — 3)° P .
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AL ® Symbolic differ-

entiation utilities are capable of
differentiating very complicated
functions. Often, however, the result
is given in unsimplified form. If you
have access to such a utility, use it to
find the derivatives of the functions
given in Examples 7, 8, and 9. Then
compare the results with those given
on this page.
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Simplifying Derivatives

The next three examples illustrate some techniques for simplifying the “raw deriva-
tives” of functions involving products, quotients, and composites.

EXAMPLE Simplifying by Factoring Out the Least Powers

flv) = 21— 2 Original function
= x}1 — xg)"fz Rewrite.
fx) = A‘Zi [(1 = x)2] + (1 — x2)|/2i [x2] Product Rule
dx dx
= xz[é (1- xz)_lfz(*lr)] + (1 — x2)V2(2x) General Power Rule
= —x31 — x?)~V2 + 2x(1 — x?)1/2 Simplify.
= x(1 — 2"V —x(1) + 2(1 — x?)] Factor.
x(2 — 3x2) -
= ﬁ Simplify.

EXAMPLE JE] Simplifying the Derivative of a Quotient

f(x) = Original function
¥x2+ 4
=t Rewrite.
G2+ 4
(g = L2 DY) — x(1/3)62 + 4) 2000 |
f(x) T (x2 T 4)2/3 Quotient Rule
1 Al 30:2 + ) — (23)(1)
= §(x2 + 4) 2/3[ e Faclor,
o xr+ 12 -
- 32 + 4)3 Simplify.
O EXAMPLE E Simplifying the Derivative of a Power
_(3)c—1)2 Orieinal functi
y= 2+ 3 riginal function
n w ! u’
ey
,=2(3x—l)i[3x—l] General P Rl
v 213|213 eneral Power Rule
_ [2(3x - 1)][&2 +3)(3) — (3x — 1)(2x)] e Rl
X2 +3 (x2 T 3)2 Quotient Rule
C2(3x — D(Bx? +9 — 622 + 2x) Mol
= (x2 + 3) ultiply.
. 2(3x — 1)(=3x2 + 2x + 9) N
- (x2 T 3)3 Simplify. |
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Transcendental Functions and the Chain Rule
The “Chain Rule versions™ of the derivatives of the six trigonometric functions and
the natural exponential function are as follows.
i[s,in u] = (cos u) u’ i[cos u] = —(sinu) u’
dx dx
i[tan u] = (sec?u) u’ i[cot ul = —(csc2u)u’
dx dx
i[s.ec u] = (secutanu) u’ i[csc ul = —(cscucotu)u’
dx dx
d
E[e“] = ey’
EXAMPLE m Applying the Chain Rule to Transcendental Functions
Be sure that you understand u cos i u’
the mathematical conventions regarding -~
parentheses and trigonometric functions. a. y = sin 2x v’ = cos 2x— [2x] = (cos 2x)(2) = 2 cos 2x
. . . . dx
For instance, in Example 10(a), sin 2x is
written to mean sin(2x). " sinu u’
r — N N
d
b. y = cos{x — 1) vy’ = —sin{x — I)E[x — 1] = —sin(x — 1)
er u'
u i T
e d
c.y=e* y = 632[3)(] = 33

EXAMPLE m Parentheses and Trigonometric Functions

a. y = cos 3x? = cos(3x?) y’ = (—sin 3x2)(6x) = —6x sin 3x2

b. y = (cos 3)x? v’ = (cos 3)(2x) = 2xcos 3

¢ y = cos(3x)* = cos(9x?) vy’ = (—sin 9x?)(18x) = — 18x sin 9x2

d. vy = cos?x = (cos x)? v’ = 2(cos x)(—sin x) = —2 cos xsinx ]

To find the derivative of a function of the form k{x) = f(g(h(x))), you need to
apply the Chain Rule twice, as shown in Example 12.

EXAMPLE EP] Repeated Application of the Chain Rule

f(l‘) = sin® 4t Original function
= (Sin 4.!‘)3 Rewrile,
. d;.
f'(l‘) = 3(sin 4{)2E[SIH 4!] Apply Chain Rule once.
a2 d , ‘
= 3(51[’] 4f) (COS 4[) E [4!] Apply Chain Rule a second time.
= 3(sin 41)*(cos 4)(4)
= 12 sin? 41 cos 4¢ Simplify. [
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EXPLORATION

Use the table feature of a graphing
utility to display the values of
f(x) = In x and its derivative for
x=0,1,2,3, .... Whatdo
these values tell you about the
derivative of the natural
logarithmic function?
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The Derivative of the Natural Logarithmic Function

Up to this point in the text, derivatives of algebraic functions have been algebraic and
derivatives of transcendental functions have been transcendental. The next theorem
looks at an unusual situation in which the derivative of a transcendental function
is algebraic. Specifically, the derivative of the natural logarithmic function is the
algebraic function 1/x.

THEOREM 3.13 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

Let u be a differentiable function of x.

d 1
1. dx[lnx] =0 x> 0

To prove the first part, let v = In x, which implies that ¢* = x. Differentiating
both sides of this equation produces the following.

y=lnx
e’ =x
d. o ,_d
el = 1]
e-"% =1 Chain Rule
dy 1
dy. &
dy _ 1
dy x

The second part of the theorem can be obtained by applying the Chain Rule to the
first part. [ ]

O EXAMPLE m Differentiation of Logarithmic Functions

d w21
a. dx[ln(Zx)]f p 72)[7){ u = 2x
drs _w_ .
b.dx[ln(x +l)]—u—x2+l u=x+1
c. % [xInx] = x(% [In x]) + (In x)(% [x]) Product Rule
- x(l) + (n2)(1)
X
=1+Inx
L 1n 27 = 300 22 [In ] Chain Rule
d dx dx
= 3(In x)zl u
X
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The Granger Collection

JOHN NAPIER (1550-1617)

Logarithms were invented by the Scottish
mathematician John Napier. Although he
did not introduce the natural logarithmic
function, it is sometimes called the
Napierian logarithm.

In Examples 14 and 15, be sure
that you see the benefit of applying loga-
rithmic properties before differentiation.
Consider, for instance, the difficulty of
direct differentiation of the function
given in Example 15.

John Napier used logarithmic properties to simplify calculations involving
products, quotients, and powers. Of course, given the availability of calculators, there
is now little need for this particular application of logarithms. However, there is great
value in using logarithmic properties to simplify differentiation involving products,
quotients, and powers.

EXAMPLE m Logarithmic Properties as Aids to Differentiation

Differentiate f(x) = In/x + 1.
Solution Because

f(x) =InJx+1= ln(x + l)”z = %ln(x + 1) Rewrite before differentiating.
you can write
.f’(JC) = %(x Jlr l) = 2()65# 1)- Differentiate.

EXAMPLE m Logarithmic Properties as Aids to Differentiation

. ) x(x2 + 1)?
Differentiate f(x) = In—F———=.
9 V2x =1
Solution
20y 2
f{x} = IHTEZT——I)l Write original function.
=Inx +2 1n(x2 + 1) T %ln(2x3 -3 l) Rewrite before differentiating.
1 2x 1 6x2
fx) = et 2(x2 l 1) - E(Zx-‘x— l) Differentiate.
= i + = - 3—x3 Simplify ]
x x40 2 -1 B

Because the natural logarithm is undefined for negative numbers, you will often
encounter expressions of the form In|u|. Theorem 3.14 states that you can differenti-
ate functions of the form y = In|u| as if the absolute value notation was not present.

THEOREM 3.14 DERIVATIVE INVOLVING ABSOLUTE VALUE

If u 1s a differentiable function of x such that u # 0, then

d u’
dx[ln|u|] =

If u > 0, then |u| = u, and the result follows from Theorem 3.13. If u < 0,
then |u| = —u, and you have
u/

d d —u’
dx[ln|u|] = dx[ln(—u)] ===k |
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LI These differentiation rules are

similar to those for the natural exponen-

tial function and the natural logarithmic
function. In fact, they differ only by the
constant factors In @ and 1/In a. This
points out one reason why, for calculus,
¢ is the most convenient base.
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Bases Other than e

The base of the natural exponential function is e. This “natural” base can be used to
assign a meaning to a general base a.

DEFINITION OF EXPONENTIAL FUNCTION TO BASE a

If a is a positive real number (¢ # 1) and x is any real number, then the expo-
nential function to the base a is denoted by ¢* and is defined by

at = E‘,(ln a]x_

If @ = 1, then y = 1* = 1 is a constant function.

Logarithmic functions to bases other than e can be defined in much the same way
as exponential functions to other bases are defined.

DEFINITION OF LOGARITHMIC FUNCTION TO BASE «

If a is a positive real number (e # 1) and x is any positive real number, then
the logarithmic function to the base a is denoted by log, x and is defined as

1
log, x =7—Inux.

Ina

To differentiate exponential and logarithmic functions to other bases, you have two
options: (1) use the definitions of ¢* and log, x and differentiate using the rules for the
natural exponential and logarithmic functions, or (2) use the following differentiation
rules for bases other than e.

THEOREM 3.15 DERIVATIVES FOR BASES OTHER THAN ¢

Let a be a positive real number (@ # 1) and let u be a differentiable function
of x.

d d du
l.dx[a]—(lna)a Z.dx[a]—(lna)adx
1 d 1 du

" (lnakx 4. dx Llog, u] = (In a)u dx

3. dix [log, x]

By definition, @* = e Therefore, you can prove the first rule by letting
u = (In @)x and differentiating with base e to obtain

d d du

— [ ] = = [pllnax] = ju—— — _llnax — x

dx[ﬂ ] dx[e 1=¢ ¢ (In @) = (In a)a™.
To prove the third rule, you can write

d d| 1 1 (1 1

dx Llog, x] = dx [In a In x] " In a(x) " (lna)x

The second and fourth rules are simply the Chain Rule versions of the first and
third rules. u

Copyright © Cengage Learning Printed: 9/10/14 14:49



Licensed to: Stacy Dunne stdunne@thesalisburyschool.org 4127391
160 Chapter 3  Differentiation

EXAMPLE [ Differentiating Functions to Other Bases

Find the derivative of each function.

a. y=2" b, y = 2% c. vy = log,,cos x

Solution
L — i X| — X
a y'=— [2¢] = (In2)2

b,y = ;_ [25] = (In2)2%(3) = (31n2)2%
§ Y To become skilled at g
differentiation, you should memorize
each rule in words, not symbols. As , d —sinx
an aid to memorization, note that the .y = dx [log,q cos x] = (In 10) cos REETET: tan x u
cofunctions (cosine, cotangent, and
cosecant) require a negative sign as
part of their derivatives.

Try writing 2% as 8" and differentiating to see that you obtain the same result.

This section concludes with a summary of the differentiation rules studied so far.

SUMMARY OF DIFFERENTIATION RULES
General Differentiation Rules Let u and v be differentiable functions of x.

Constant Rule: (Simple) Power Rule:

Derivatives of Trigonometric
Functions

Derivatives of Exponential and
Logarithmic Functions
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d d d

—lc] = ¢ T+ =ay L] —= =1
1) &) = 1| Ly
Constant Multiple Rule: Sum.or Difference Rule:

d d

E[cu]=cu’ d—x[uiv]=u’i v’
Product Rule: Quotient Rule:

%[uv] = v’ + vu’

Chain Rule:

d o
)] = fw)

[sin x] = cos x

[cos x] = —sinx

i[g] _ v —w
dx| v v?

General Power Rule:

i[un] =nu" 'u’

dx

i|:tan x] = sec’x

dx

i[eot x] = —ese?x

d 1
dx[lnx] ==

d 1
dx[log“ * = (In a)x

% [s&c x] = sec x tan x

4. [escx] = —cscxcotx
dx



